Sambandet mellan grafen till y=f ’(x) och y=f(x).

Hur ser man på grafen till \[y=f(x)\] hur grafen till \[y=’f(x)\] ska se ut? Eller tvärtom. Kan man med hjälp av grafen till \[y=f'(x)\] bestämma hur grafen till \[y=f(x)\] ska se ut? Det finns en koppling dessa emellan och det är viktigt, inte minst att du undersöker den teckenväxling som derivatan har omkring sitt nollställe. Om grafen till derivatan av en funktion är avtagande och skär x-axeln vid x=a. Då kommer den ursprungliga funktionen ha ett extrevärde just där eftersom derivatan har ett nollställe. Men är det då en min-punkt eller en max-punkt? Det kan du avgöra utifrån den information som du nyss fick.
[ratings]
3bc3

4 thoughts on “Sambandet mellan grafen till y=f ’(x) och y=f(x).
  1. Hi, this is Irina. I am sending you my intimate photos as I promised. https://tinyurl.com/y8kvf3bu

  2. We have prepared a special offer for you. Take your 500$ https://tinyurl.com/y6l62st2

  3. We have prepared a special offer for you. Take your 500$ https://tinyurl.com/yxkrx8w7

  4. We have prepared a special offer for you. Take your 500$ https://tinyurl.com/y3s9gz6e

Lämna ett svar

Din e-postadress kommer inte publiceras.

*
*